
International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 112
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Survey on Design Paradigms to solve
0/1 Knapsack Problem

P.Vickram, Dr. A. Sri Krishna and V.Sesha Srinivas

Abstract-This paper analyses various algorithm design strategies to solve the 0/1 Knapsack Problem.The
Knapsack problem which is a maximization problem where one has to maximize the profit of objects in a
knapsack without exceeding the capacity of the knapsack.The paper compares different algorithms in terms of the
time, memory requirements and programming efforts.Comparison shows that the Dynamic Programming and
Genetic Algorithms Strategies are more efficient comparatively with other strategies. The paper performs in depth
analysis on these strategies and specifies the limitations and advantages.

Index Terms - Multi-objective problem, Combinatorial Optimization, Genetic Algorithm, Evolutionary Algorithm,
NP Completeness.

—————————— ——————————

1. INTRODUCTION
Due to practical importance the 0/1 Knapsack
Problem [1] is widely used. In last few years the
generalization of this problem has been studied
and many algorithms have been proposed.
Evolutionary approach for solving the multi-
objective 0/1 Knapsack Problem is one of them,
many real worked papers found in the literature
about multi-objective Knapsack Problem and
about the algorithms introduced for solving
them([2], [3], [4], [5]).

The knapsack problem [4] [5] is a
problem in combinatorial optimization. Given a
set of items, each with a cost and a value,
determine the number of each item to include in
a collection so that the total cost is least than a
given limit and the total value is as large as
possible. Consider n kind of items. 1 through n,
each item i has a value Pi and a weight Wi. The
maximum weight that carries the knapsack is W.

• P Vickram is currently pursuing bachelor’s
degree program in Computer Science
engineering in RVR&JC College of Eng., Guntur,
Andhra Pradesh India, PH:+91 94415 77577.
E-mail: vickrampentyala@gmail.com.

• Dr.A.Srikrishna, Professor, Dept of Information
Technology, R.V.R. & J.C. College of
Engineering, Guntur, Andhra Pradesh, India,
PH- +91 94415 77577.
Email: atlurisrikrishna@gmail.com.

• V. Sesha Srinivas , Asst.Professor, Dept of
Information Technology, R.V.R. & J.C. College of
Engineering, Guntur, Andhra Pradesh, India,
PH- +91 7382323001.
 Email: vangipuramseshu@gmail.com

The 0/1 knapsack is a special case of the

original knapsack problem in which each item of
input cannot be subdivided to fill a container in
which that input partially fits. The 0/1 knapsack
problem restricts the number of each kind of
item xj to zero or one. Many optimization
problems in decision-making can be presented as
the 0-1 Knapsack Problem (KP). The 0-1
Knapsack Problem consists of loading objects in
to a knapsack in such a way that the obtained
total profit of all objects included in the knapsack
is maximum and the sum of the weights of all
packed objects does not exceed the total
knapsack load capacity. Each object can be
loaded or not loaded into the knapsack; this is
the 0-1 decision concerning object loading. There
are also other versions of this problem such as
the Multi-dimensional 0-1 Knapsack Problem [6,
7–9] or the Multiple 0-1 Knapsack Problem [7–10,
11, 12]. The 0-1 Knapsack Problem does not
allow the user to put multiple copies of the same
items in their knapsack.

The Knapsack Problem has applications
in areas such as operations research and finance.
It is used in areas such as cargo packing in the
airline and shipping industry. It has been
referred to in various contexts as the “bin
packing problem”. The Knapsack problem is also
well known in computer science, as it belongs to
a class of problems which are NP Complete.
When a problem is "NP-Complete" there is no
known algorithm to solve the problem in
polynomial time. It also means that if there were
a polynomial time solution, all other NP
problems could be reduced to the knapsack
problem in polynomial time, and therefore be
solved in polynomial time themselves. Hence,
this type of problem has been studied carefully

IJSER

http://www.ijser.org/
mailto:vickrampentyala@gmail.com
mailto:atlurisrikrishna@gmail.com

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 113
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

because of its relationship to other important
problems in computer science.

THE KNAPSACK PROBLEM (KP)
The Knapsack Problem is an optimization
problem. A Knapsack will have a capacity W,
there will be N distinct objects(i) with
weight(Wi) and profits(Pi) are to be placed into
the knapsack such that the total profit is
maximum and the total weights of the objects
should be lesser than or equal to the capacity of
the knapsack.

Xi takes the values 0 or 1. 1 specifies that the
object i is considered into the Knapsack and 0
specifies that the object i is not considered into
the Knapsack.

 (1)
Subjected to constraints:

 (2)

And Xi= 0 or 1

The organization of the paper is as follows:
Section 1 discusses Knapsack problem and
applications, section 2 deals with design
paradigms to solve Knapsack Problem,
Discussions regarding implementation of
different design paradigms in section 3 and
finally conclusion is given in section 4.

2.DESIGN PARADIGMS

2.1 GREEDY ALGORITHM

Greedy is an algorithm design strategy
which makes a local optimal choice at each stage
with the expectation of finding the global
optimal solution. The heuristic search for solving
the Knapsack problem is find the sorted order of
objects with respect to profit weight ratio. Then
consider the objects in that order by considering
the constraint i.e., sum of the weights of the
considered objects should be lesser than or equal
to the capacity of the knapsack.

ALGORITHM GreedyAlgorithmKnap(Weights
[1 … N], Values [1 … N])
// Input: Array Weights is the weights of all
items, Array Values is the values of all items
// Output: Array Solution indicates the items are
included in the knapsack (‘1’) or not (‘0’) Integer
cum Weight

Compute the value-to-weight ratios ri = vi / wi, i
= 1… N, for the items given
Sort the items in decreasing order of the value-to-
weight ratios
for all items do
 if the current item on the list fits into the
knapsack then

place it in the knapsack
 else
 proceed to the next one

Complexity

1. Sorting by any advanced algorithm is
O(NlogN)

2. = [1+1+1….1] (N times) = N
≈O(N)

From (1) and (2), the complexity of the greedy
algorithm is, O(NlogN) + O(N) O(NlogN). In
terms of memory, this algorithm only requires a
one dimensional array to record the solution
string that is O(N).

2.2 DYNAMIC PROGRAMMING

Dynamic Programming is a design strategy

for solving problems whose solutions satisfy
recurrence relations with overlapping
subproblems. Dynamic Programming simplifies
a complicated problem by breaking it down into
simpler sub problems in a recursive manner. It
follows Principle of Optimality. The definition of
Principle of Optimality is given by Richard
Bellman as “ An optimal solution has the
property that whatever the initial state and initial
decisions are, the remaining decisions must
constitute an optimal solution with regard to the
state resulting from the first decision. The
classical dynamic programming approach works
bottom-up [15].

To design a dynamic programming
algorithm for the 0/1 Knapsack problem, we
need to derive a recurrence relation that
expresses a solution to an instance of the
knapsack problem in terms of solutions to its
smaller instances.

Consider an instance of the problem defined
by the first i items, 1 ≤i≤ N, with weights w1,…
,wi,values p1, … , pi, and knapsack capacity j, 1
≤ j ≤ Capacity.
Let Table [i, j] be the optimal solution of this
instance (i.e. the value of the most valuable
subsets of the first i items that fit into the
knapsack capacity of j). Divide all the subsets of
the first i items that fit the knapsack of capacity j
into two categories that do not include the ith

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 114
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

item and subsets that include the ith item. This
leads to the following recurrence

If j <wi then
Table [i, j] ← Table [i-1, j] cannot fit the ith item

Else
Table [i, j] ←maximum{Table [i-1, j]
 Do not use the ithitem AND vi + Table[i-1, j – vi,]
Use the ith item
 The goal is to find Table [N, Capacity] the
maximal value of a subset of the knapsack. The
two boundary conditions for the KP are: The
knapsack has no value when there no items
included in it (i.e. i = 0) Table [0, j] = 0 for j≥0

1. The knapsack has no value when its
capacity is zero (i.e. j = 0), because no
items can be included in it. Table [i, 0] =
0 for i≥ 0

ALGORITHM
DynamicProgrammingKnap(Weights [1 … N],
Values [1 … N], Table [0 ... N, 0 … Capacity])
// Input: Array Weights is the weights of
all items, Array Values is the values of all items,
Array Table is initialized with 0s; it is used to
store the results from the dynamic programming
algorithm.
// Output: The last value of array Table (Table
[N, Capacity]) gives the optimal solution of the
problem for a given Capacity

for i = 0 to N do
 for j = 0 to Capacity
 if j< Weights[i] then
 Table [i, j] ← Table[i-1, j];
 else
 Table[i, j] ←maximum {Table[i-1, j] AND
Values[i] + Table [i-1, j – Weights[i]];
return Table[N, Capacity];

The algorithm uses one array Items of type items,
where each item is a structure with two fields:
weight and value.
Optimal solution, is obtained using the following
algorithm:

n ← N
 c←Capacity
 Start at position Table[n, c]
While the remaining capacity is greater than 0 do
 If Table[n, c] = Table[n-1, c] then
 Item n has not been included in the
optimal solution
 Else
 Item n has been included in the
optimal solution
 Process Item n

 Move one row up to n-1
 Move to column c – weight(n)

Complexity

 = Capacity * [1+1+1+……+1] (N times)
 = Capacity * N
 = O (N*Capacity)

Thus, the complexity of the Dynamic
Programming algorithm is O (N*Capacity). In
terms of memory, Dynamic Programming
requires a two dimensional array with rows
equal to the number of items and columns equal
to the capacity of the knapsack. This algorithm is
easiest to implement because it does not require
the use of any additional structures.

2.3 BACKTRACKING

A backtracking algorithm is a recursive

method for finding feasible solutions to a
combinatorial optimization problem. A
backtracking algorithm is an exhaustive search
thatfinds all feasible solutions to find the optimal
solution. Pruning methods can be used to avoid
some feasible solutions that are not optimal. In a
knapsack problem a problem instance consists of
a list of values, P = [p1,...,pn]; a list of weights, W
= [w1,...,wn]; and a capacity, W. These are all
positive integers. We have to find the maximum
value of pixi subject to wixi ≤ W and xi ∈ {0, 1} for
all i. An n-tuple [x1, x2,...,xn] of 0’s and 1’s is a
feasible solution if wixi ≤ W. One way to solve
this problem is to try all 2n possible n-tuples of
0’s and 1’s. Backtracking provides a simple
method for generating all possible n-tuples. After
each n-tuple is generated it is checked for
feasibility. If it is feasible, then its profit is
compared to the current best solution found to
that point. The solution is updated each time
when a better feasible solution is obtained.

To implement backtracking constructing a
tree is a better choices known as "State Space
Tree". The root is an initial state before the search
for the solution begins. The nodes of the first
level in the tree represent the choices for the first
component and the nodes of a second level
represent the choices for the second component
and so on.
A node in the state space tree is promising if it
corresponds to the partials constructed solution
that may lead to the complete solution otherwise
the nodes are called non-promising. Leaves of
the tree represent either the non- promising dead
end or complete solution found by the algorithm.
The backtracking solution is given by a recursive

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 115
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

procedure named BTKnap, where the parameter
“lev” shall denote the current co-ordinate
(corresponding to the depth of a node in a tree)
being chosen. OPTX and OPTP are passed by
reference. Start with lev = OPTX = OPTP = 0.

ALGORITHM BackTrackingKnap (lev: depth
of a node, OPTP: optimal profit, OPTX: optimal
weight)
// Input: Array Weights contains the weights of
all items, Array Values contains the values of all
items
// Output: A state space tree with all possible
solution nodes

Begin
 if (lev = n+1)then
 if (P wixi ≤ W AND ∑ p i xi > OPTP)then
 OPTP = ∑ p i xi;
 OPTX = X;
 end
 end
 else if
 xlev = 1 ;
 knap (lev+1, OPTP, OPTX);
 else
 xlev = 0 ;
 knap (lev+1, OPTP, OPTX);
 end
 end

This procedure generates all 2n possible n-tuples
in reverse lexicographic order. The complexity is
O (n·2n), since the second if-statement takes O
(n). The recursive calls generated by Knap
produce a binary tree, called the state space tree
of the given problem instance.

2.4 BRANCH AND BOUND

Optimization problems like knapsack

problem can be solved using Branch and Bound.
It is an improvement over exhaustive search. In
Branch and bound, candidate solutions one
component at a time are generated and evaluates
the partly constructed solutions. If no potential
values of the remaining components to find a
solution, the remaining components are not
generated. This approach solves some large
instances of difficult combinatorial problems,
though, in the worst case, it still has an
exponential complexity.

Branch and Bound constructs a ‘state space
tree’. In the context of the Knapsack problem, if
there are N possible items to choose from, then
the kth level represents the state where it has been
decided which of the first k items have or have
not been included in the knapsack. In this case,

there are 2k nodes on the kth level and the state
space tree’s leaves are all on level N [15].
Breadth First or Best First methods are used to
traverse the state space tree in Branch and
Bound. Both breath-first and best-first stop
searching in a particular sub-tree, when they find
the search would give no optimal solution.

Breadth First uses a regular queue whereas
the Best First uses a priority queue, where both
queues keep track of all currently known
promising nodes.
In the state space tree, a branch going to the left
indicates the inclusion of the next item while a
branch to the right indicates its exclusion. In each
node of the state space tree, we record the
following information:

level- indicates which level is the node at,
cumValue – the cumulative value of all items that
have been selected on this branch,

cumWeight – the cumulative weight of all items
that have been selected on this branch,
nodeBound– used as a key for the priority queue.

The upper bound on the value of any
subset is computed by adding the cumulative
value of the items already selected in the subset,
v, and the product of the remaining capacity of
the knapsack (Capacity minus the cumulative
weight of the items already selected in the
subset, w,) and the best per unit payoff among
the remaining items, which is vi+1 / wi+1 [15].

Upper Bound = v + (Capacity – w)*(vi+1 / wi+1)

ALGORITHM BestFirstBranchAndBoundKnap
(Weights [1 … N], Values [1 … N)
// Input: Array Weights contains the values of
all items, Array Values contains the values of all
items
// Output: An array that contains the best
solution and its MaxValue
// Precondition: The items are sorted according
to their value-to-weight ratios
PriorityQueue<nodeType> PQ
nodeType current, temp
Initialize the root
PQ.enqueue(the root)
MaxValue = value(root)
while (PQ is not empty)
current = PQ.GetMax()
if (current.nodeBound>MaxValue) then
 Set the left child of the current node to
include the next item
if (the left child has value greater than
MaxValue) then
 MaxValue = value (left child)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 116
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 Update Best Solution
if (left child bound better than MaxValue) then
 PQ.enqueue(left child)
 Set the right child of the current node not to
include the next item
if (right child bound better than MaxValue) then
 PQ.enqueue(right child)
return the best solution and it’s maximum value

In the worst case, the branch and bound
algorithm will generate all intermediate stages
and all leaves. Therefore, the tree will be
complete and will have 2n-1 – 1 nodes, i.e. will
have an exponential complexity. However, it is
still better than the brute force algorithm because
on average it will not generate all possible nodes
(solutions). The required memory depends on
the length of the priority queue.

2.5 GENETIC ALGORITHM

A genetic algorithm is a computer algorithm

that searches for best solutions to a problem from
among a large number of possible solutions. GAs
begin with a set of solutions called population
and each solution is called chromosome. From
solutions of current population, a new
population is generated in hope of getting a
better solution.The new population is generated
by applying the GA operations- Mutation, Cross-
Over and Selection [16]. This process is repeated
until some condition is satisfied [17]. From the
population, find the best chromosome with high
optimality as the result in that generation.
Results of the generations are compared and if
the difference in the results of any two
consecutive generations is lesser than a pre
specified threshold, then stop the procedure of
generating new populations and can declare the
chromosome with high optimality as result.
Outline of basic Genetic Algorithms are given
here.

1. Start: Randomly generate a population
of N chromosomes.

2. Fitness: Calculate the fitness of all
chromosomes.

3. Create a new population:
a. Selection: Randomly 2

chromosomes are selected from
the population.

b. Crossover: Perform crossover
on the 2 chromosomes which
are selected.

c. Mutation: Perform mutation on
the chromosomes which are
obtained after performing
crossover.

4. Replace: Replace the current population
with the new population.

5. Test: Test whether the end condition is
satisfied. If so, stop. If not, return the
best solution in current population and
go to step 2.

Each iteration of this process is called
generation. The entire set of generations is called
a run [3].
Complexity .The complexity of the genetic
algorithm depends on the number of items (N)
and the number of chromosomes in each
generation (Size). It is O(Size*N).

3. DISCUSSION

Implementation of Greedy algorithm is
simple, will get only feasible solution and no
guarantee that will get optimal solution its time
complexity is linear with best sorting algorithm
i.e. O(n) where n is the number of objects.

Implementation of Dynamic Programming,
Backtracking, Branch and Bound and Genetic
algorithms is little bit difficult but will get the
optimal solution. Dynamic Programming results
only one solution whereas the other methods
result all possible optimal solutions. The time
complexity of Dynamic Programming algorithm
is polynomial i.e. O(n*W) where n is the number
of objects and the W is the capacity of the bag.
The time complexity of the other methods is
exponential i.e. O (2n) where n is the number of
objects. Dynamic Programming, Branch and
Bound and Genetic algorithm can be
implemented as a parallel algorithm with linear
complexity.

4. CONCLUSION
The comparison of the greedy, dynamic

programming, backtracking, branch and bound
and genetic algorithms shows that the
complexities of some these algorithms are
exponential, but may be applied to more suitable
problems than others. The best approximation
approaches for the 0/1 Knapsack Problem are
dynamic programming and genetic algorithm.
As, the choice between the two depends on the
capacity of the knapsack and the size of the
population. The dynamic programming yields
only one optimal solution and GA results all the
possible optimal solutions. The dynamic
programming is easy and straight forward to
code than genetic algorithm but the genetic
algorithm can be programmed in linear time in
parallel environment.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 117
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

REFERENCES

[1] Gossett, Eric. Discreet Mathematics with Proof. New
Jersey: Pearson Education Inc., 2003.
[2] Martello, S. and Toth, P. Knapsack problems:
Algorithms and computer implementation, J. Willey and
Sons, Chichester, 1990;
[3] Penn, M., Hasson, D., Avriel, M. Solving the 0/1
proportional Knapsack problem by sampling, J.
optim.Theory Appl.80, 261-272, 1994;
[4] Sahni, S. Approximate algorithms for the 0/1 knapsack
problem, Journal of ACM 22, 115-124, 1975;
[5] Vasquez, M., Hao, J. K. A hybrid approach for the 0/1
multidimensional knapsack problem. Proceedings of the
13th International Joint Conference on Artificial
Intelligence (IJCAI 01) 1, 328-333, 2001;

 [6] Alaya I., Solnon C., Gheira K., Ant algorithm for the
multi-dimensional knapsack problem, International
Conference on Bioinspired Optimization Methods and
their Applications, (BIOMA 2004), 2004, 63-72.
[7] Fidanova S., Ant Colony Optimization for Multiple
Knapsack Problem and Heuristic Model, Kluwer
Academic Publishers, 2004.
[8] Fidanova S., Ant Colony Optimization for Multiple
Knapsack Problem and Model Bias, [in:] Margenov S.,
Vulkov L.G., Wasniewski J. (Eds.), Numerical Analysis
and Its Applications, LNCS, Vol. 3401, Springer, Berlin
Heidelberg, 2005, 280-287.
[9] Fidanova S., Probabilistic Model of Ant Colony
Optimization for Multiple Knapsack Problem, In
Lirkov I., Margenov S., Wasniewski J. (Eds.), LSSC 2007,
LNCS 4818, Berlin 2008, 545-552.
[10] Ke L., Feng Z., Ren Z., Wei X., An ant colony
optimization approach for the multi-dimensional
knapsack problem, Journal of Heuristics, Vol. 16, No. 1,
2010, 65-83.
[11] Shahrear I., Faizul B., Sohel R., Solving the
Multidimensional Multi-choice Knapsack Problem with
the Help of Ants, M. Dorigo et al. (Eds.), ANTS 2010,
LNCS 6234, Berlin 2010, 312-323.
[12] Ji J., Huang Z., Liu C., Liu X., Zhong N., An Ant
Colony Optimization Algorithm for Solving the
Multidimensional Knapsack Problems, [in:] Proceedings
of the 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IEEE Computer Society, Los
Alamitos, 2007, 10-16.
[13] Fidanova S., Heuristic for the multiple knapsack
problems, IADIS International Conference on Applied
Computing, 2005, 255-260.
[14] Boryczka U., Ants and Multiple Knapsack Problem,
6th International Conference on Computer Information
Systems and Industrial Management Applications
(CISIM’07), 2007, IEEE Computer Society, No. P2894, 2007,
149-154.
[15] Levitin, Anany. The Design and Analysis of
Algorithms. New Jersey: Pearson Education Inc., 2003.

[16] Mitchell, Melanie. An Introduction to Genetic
Algorithms. Massachusettss: The MIT Press, 1998.
[17]Obitko, Marek. “Basic Description.” IV. Genetic
Algorithm. Czech Technical University (CTU).
http://cs.felk.cvut.cz/~xobitko/ga/gaintro.htmlHristakeva,
Maya and DiptiShrestha. “Solving the 0/1 Knapsack
Problem with Genetic Algorithms.” MICS 2004
Proceedings.

IJSER

http://www.ijser.org/
http://cs.felk.cvut.cz/~xobitko/ga/gaintro.html

	REFERENCES

