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A Survey on Design Paradigms to solve 
0/1 Knapsack Problem 

P.Vickram, Dr. A. Sri Krishna and V.Sesha Srinivas 

 

Abstract-This paper analyses various algorithm   design strategies to solve the 0/1 Knapsack Problem.The 
Knapsack problem which is a maximization problem where one has to maximize the profit of objects in a 
knapsack without exceeding the capacity of the knapsack.The paper compares different algorithms in terms of the 
time, memory requirements and programming efforts.Comparison shows that the Dynamic Programming and 
Genetic Algorithms Strategies are more efficient comparatively with other strategies. The paper performs in depth 
analysis on these strategies and specifies the limitations and advantages.  

Index Terms -  Multi-objective problem, Combinatorial Optimization, Genetic Algorithm, Evolutionary Algorithm, 
NP Completeness.  

——————————      —————————— 
 
 
1. INTRODUCTION 
Due to practical importance the 0/1 Knapsack 
Problem [1] is widely used. In last few years the 
generalization of this problem has been studied 
and many algorithms have been proposed. 
Evolutionary approach for solving the multi-
objective 0/1 Knapsack Problem is one of them, 
many real worked papers found in the literature 
about multi-objective Knapsack Problem and 
about the algorithms introduced for solving 
them([2], [3], [4], [5]).  

The knapsack problem [4] [5] is a 
problem in combinatorial optimization.  Given a 
set of items, each with a cost and a value, 
determine the number of each item to include in 
a collection so that the total cost is least than a 
given limit and the total value is as large as 
possible. Consider n kind of items. 1 through n, 
each item i has a value Pi and a weight Wi.  The 
maximum weight that carries the knapsack is W. 
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The 0/1 knapsack is a special case of the 

original knapsack problem in which each item of 
input cannot be subdivided to fill a container in 
which that input partially fits. The 0/1 knapsack 
problem restricts the number of each kind of 
item xj to zero or one. Many optimization 
problems in decision-making can be presented as 
the 0-1 Knapsack Problem (KP). The 0-1 
Knapsack Problem consists of loading objects in 
to a knapsack in such a way that the obtained 
total profit of all objects included in the knapsack 
is maximum and the sum of the weights of all 
packed objects does not exceed the total 
knapsack load capacity. Each object can be 
loaded or not loaded into the knapsack; this is 
the 0-1 decision concerning object loading. There 
are also other versions of this problem such as 
the Multi-dimensional 0-1 Knapsack Problem [6, 
7–9] or the Multiple 0-1 Knapsack Problem [7–10, 
11, 12]. The 0-1 Knapsack Problem does not 
allow the user to put multiple copies of the same 
items in their knapsack. 

The Knapsack Problem has applications 
in areas such as operations research and finance. 
It is used in areas such as cargo packing in the 
airline and shipping industry. It has been 
referred to in various contexts as the “bin 
packing problem”. The Knapsack problem is also 
well known in computer science, as it belongs to 
a class of problems which are NP Complete. 
When a problem is "NP-Complete" there is no 
known algorithm to solve the problem in 
polynomial time. It also means that if there were 
a polynomial time solution, all other NP 
problems could be reduced to the knapsack 
problem in polynomial time, and therefore be 
solved in polynomial time themselves. Hence, 
this type of problem has been studied carefully 
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because of its relationship to other important 
problems in computer science. 
 
THE KNAPSACK PROBLEM (KP) 
The Knapsack Problem is an optimization 
problem. A Knapsack will have a capacity W, 
there will be N distinct objects(i) with 
weight(Wi) and profits(Pi) are   to be placed into 
the knapsack such that the total profit is 
maximum and the total weights of the objects 
should be lesser than or equal to the capacity of 
the knapsack. 
 
Xi takes the values 0 or 1. 1 specifies that the 
object i is considered into the Knapsack and 0 
specifies that the object i is not considered into 
the Knapsack.  
 

   
     (1) 
Subjected to constraints: 

    
     (2) 
 
And    Xi= 0 or 1 
 

The organization of the paper is as follows: 
Section 1 discusses Knapsack problem and 
applications, section 2 deals with design 
paradigms to solve Knapsack Problem, 
Discussions regarding implementation of 
different design paradigms in section 3 and 
finally conclusion is given in section 4. 

2.DESIGN PARADIGMS 
 

2.1 GREEDY ALGORITHM 
 

Greedy is an algorithm design strategy 
which makes a local optimal choice at each stage 
with the expectation of finding the global 
optimal solution. The heuristic search for solving 
the Knapsack problem is find the sorted order of 
objects with respect to profit weight ratio. Then 
consider the objects in that order by considering 
the constraint i.e., sum of the weights of the 
considered objects should be lesser than or equal 
to the capacity of the knapsack. 
 
ALGORITHM GreedyAlgorithmKnap(Weights 
[1 … N], Values [1 … N])  
// Input:   Array Weights is the weights of all 
items, Array Values is the values of all items  
// Output: Array Solution indicates the items are 
included in the knapsack (‘1’) or not (‘0’) Integer 
cum Weight 

Compute the value-to-weight ratios ri = vi / wi, i 
= 1… N, for the items given   
Sort the items in decreasing order of the value-to-
weight ratios  
for all items do 
 if the current item on the list fits into the 
knapsack then     

place it in the knapsack   
 else 
  proceed to the next one   
 
 
Complexity  

1. Sorting by any advanced algorithm is 
O(NlogN)  

2.  = [1+1+1….1] (N times) = N 
≈O(N)  

 
From (1) and (2), the complexity of the greedy 
algorithm is, O(NlogN) + O(N) O(NlogN). In 
terms of memory, this algorithm only requires a 
one dimensional array to record the solution 
string that is O(N). 
 
2.2 DYNAMIC PROGRAMMING 

 
Dynamic Programming is a design strategy 

for solving problems whose solutions satisfy 
recurrence relations with overlapping 
subproblems. Dynamic Programming simplifies 
a complicated problem by breaking it down into 
simpler sub problems in a recursive manner. It 
follows Principle of Optimality. The definition of 
Principle of Optimality is given by Richard 
Bellman as “ An optimal solution has the 
property that whatever the initial state and initial 
decisions are, the remaining decisions must 
constitute an optimal solution with regard to the 
state resulting from the first decision. The 
classical dynamic programming approach works 
bottom-up [15].   

To design a dynamic programming 
algorithm for the 0/1 Knapsack problem, we 
need to derive a recurrence relation that 
expresses a solution to an instance of the 
knapsack problem in terms of solutions to its 
smaller instances. 

Consider an instance of the problem defined 
by the first i items, 1 ≤i≤ N, with weights w1,… 
,wi,values   p1, … , pi,  and knapsack capacity j, 1 
≤ j ≤ Capacity.   
Let Table [i, j] be the optimal solution of this 
instance (i.e. the value of the most valuable 
subsets of the first i items that fit into the 
knapsack capacity of j). Divide all the subsets of 
the first i items that fit the knapsack of capacity j 
into two categories that do not include the ith 
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item and subsets that include the ith item. This 
leads to the following recurrence 
 
If      j <wi   then   
Table [i, j] ← Table [i-1, j] cannot fit the ith item       

Else   
Table [i, j] ←maximum{Table [i-1, j] 
 Do not use the ithitem AND vi + Table[i-1, j – vi,]  
Use the ith item   
          The goal is to find Table [N, Capacity] the 
maximal value of a subset of the knapsack.  The 
two boundary conditions for the KP are:   The 
knapsack has no value when there no items 
included in it (i.e. i = 0)  Table [0, j] = 0   for j≥0 
  
 

1. The knapsack has no value when its 
capacity is zero (i.e. j = 0), because no 
items can be included in it.  Table [i, 0] = 
0   for i≥ 0   
 

ALGORITHM 
DynamicProgrammingKnap(Weights [1 … N], 
Values [1 … N], Table [0  ... N, 0 … Capacity])  
// Input:    Array Weights is the weights of 
all items, Array Values is the values of all items, 
Array Table is initialized with 0s; it is used to 
store the results from the dynamic programming 
algorithm.   
// Output: The last value of array Table ( Table 
[N, Capacity]) gives the optimal solution of the 
problem for a given Capacity   

for i = 0 to N do  
 for j = 0 to Capacity    
  if j< Weights[i] then    
   Table [i, j] ← Table[i-1, j];  
  else 
 Table[i, j] ←maximum {Table[i-1, j] AND 
Values[i] + Table [i-1, j – Weights[i]]; 
return Table[N, Capacity]; 
 
The algorithm uses one array Items of type items, 
where each item is a structure with two fields: 
weight and value.   
Optimal solution, is obtained using the following 
algorithm:   
 
n ← N    
 c←Capacity 
 Start at position Table[n, c]  
While the remaining capacity is greater than 0 do   
  If Table[n, c] = Table[n-1, c] then   
   Item n has not been included in the 
optimal solution  
  Else   
   Item n has been included in the 
optimal solution  
   Process Item n 

   Move one row up to n-1 
   Move to column c – weight(n)   
 
Complexity   
 

 
 = Capacity * [1+1+1+……+1] (N times)  
  = Capacity * N  
  = O (N*Capacity)  
 
Thus, the complexity of the Dynamic 
Programming algorithm is O (N*Capacity). In 
terms of memory, Dynamic Programming 
requires a two dimensional array with rows 
equal to the number of items and columns equal 
to the capacity of the knapsack. This algorithm is 
easiest to implement because it does not require 
the use of any additional structures.    
 
2.3 BACKTRACKING 

 
A backtracking algorithm is a recursive 

method for finding feasible solutions to a 
combinatorial optimization problem. A 
backtracking algorithm is an exhaustive search 
thatfinds all feasible solutions to find the optimal 
solution. Pruning methods can be used to avoid 
some feasible solutions that are not optimal. In a 
knapsack problem a problem instance consists of 
a list of values, P = [p1,...,pn]; a list of weights, W 
= [w1,...,wn]; and a capacity, W. These are all 
positive integers. We have to find the maximum 
value of pixi subject to wixi ≤ W and xi ∈ {0, 1} for 
all i. An n-tuple [x1, x2,...,xn] of 0’s and 1’s is a 
feasible solution if wixi ≤ W. One way to solve 
this problem is to try all 2n possible n-tuples of 
0’s and 1’s. Backtracking provides a simple 
method for generating all possible n-tuples. After 
each n-tuple is generated it is checked for 
feasibility. If it is feasible, then its profit is 
compared to the current best solution found to 
that point. The solution is updated each time 
when a better feasible solution is obtained.  

To implement backtracking constructing a 
tree is a better choices known as "State Space 
Tree". The root is an initial state before the search 
for the solution begins. The nodes of the first 
level in the tree represent the choices for the first 
component and the nodes of a second level 
represent the choices for the second component 
and so on. 
A node in the state space tree is promising if it 
corresponds to the partials constructed solution 
that may lead to the complete solution otherwise 
the nodes are called non-promising. Leaves of 
the tree represent either the non- promising dead 
end or complete solution found by the algorithm. 
The backtracking solution is given by a recursive 
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procedure named BTKnap, where the parameter 
“lev” shall denote the current co-ordinate 
(corresponding to the depth of a node in a tree) 
being chosen. OPTX and OPTP are passed by 
reference. Start with lev = OPTX = OPTP = 0. 
 
ALGORITHM BackTrackingKnap (lev: depth 
of a node, OPTP: optimal profit, OPTX: optimal 
weight) 
// Input: Array Weights contains the weights of 
all items, Array Values contains the values of all 
items  
// Output: A state space tree with all possible 
solution nodes   

 
Begin  
        if (lev = n+1)then 
 if ( P wixi ≤ W AND ∑ p i  xi > OPTP )then 
    OPTP = ∑ p i  xi;  
    OPTX = X;  
   end 
  end 
   else if 
   xlev = 1 ;  
   knap (lev+1, OPTP, OPTX);  
                else 
   xlev = 0 ;  
   knap (lev+1, OPTP, OPTX);  
  end 
 end 
 
This procedure generates all 2n possible n-tuples 
in reverse lexicographic order. The complexity is 
O (n·2n), since the second if-statement takes O 
(n). The recursive calls generated by Knap 
produce a binary tree, called the state space tree 
of the given problem instance. 
 
2.4 BRANCH AND BOUND 

 
Optimization problems like knapsack 

problem can be solved using Branch and Bound. 
It is an improvement over exhaustive search.  In 
Branch and bound, candidate solutions one 
component at a time are generated and evaluates 
the partly constructed solutions. If no potential 
values of the remaining components to find a 
solution, the remaining components are not 
generated. This approach solves some large 
instances of difficult combinatorial problems, 
though, in the worst case, it still has an 
exponential complexity.   

Branch and Bound constructs a ‘state space 
tree’. In the context of the Knapsack problem, if 
there are N possible items to choose from, then 
the kth level represents the state where it has been 
decided which of the first k items have or have 
not been included in the knapsack. In this case, 

there are 2k nodes on the kth level and the state 
space tree’s leaves are all on level N [15].  
Breadth First or Best First methods are used to 
traverse the state space tree in Branch and 
Bound. Both breath-first and best-first stop 
searching in a particular sub-tree, when they find 
the search would give no optimal solution.  

Breadth First uses a regular queue whereas 
the Best First uses a priority queue, where both 
queues keep track of all currently known 
promising nodes.    
In the state space tree, a branch going to the left 
indicates the inclusion of the next item while a 
branch to the right indicates its exclusion. In each 
node of the state space tree, we record the 
following information:   
 
level- indicates which level is the node at, 
cumValue – the cumulative value of all items that 
have been selected on this branch,  
 
cumWeight – the cumulative weight of all items 
that have been selected on this branch,  
nodeBound– used as a key for the priority queue.   
 

The upper bound on the value of any 
subset is computed by adding the cumulative 
value of the items already selected in the subset, 
v, and the product of the remaining capacity of 
the knapsack (Capacity minus the cumulative 
weight of the items already selected in the 
subset, w,) and the best per unit payoff among 
the remaining items, which is vi+1 / wi+1 [15].  
  
Upper Bound = v + (Capacity – w)*(vi+1 / wi+1)  
 
ALGORITHM BestFirstBranchAndBoundKnap 
(Weights [1 … N], Values [1 … N)  
// Input:   Array Weights contains the values of 
all items, Array Values contains the values of all 
items  
// Output: An array that contains the best 
solution and its MaxValue 
// Precondition:   The items are sorted according 
to their value-to-weight ratios   
PriorityQueue<nodeType> PQ  
nodeType current, temp  
Initialize the root   
PQ.enqueue(the root)   
MaxValue = value(root)  
while (PQ is not empty)   
current = PQ.GetMax()    
if (current.nodeBound>MaxValue) then 
 Set the left child of the current node to 
include the next item  
if (the left child has value greater than 
MaxValue) then   
 MaxValue = value (left child)   
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 Update Best Solution  
if (left child bound better than MaxValue)  then 
 PQ.enqueue(left child)  
 Set the right child of the current node not to 
include the next item 
if (right child bound better than MaxValue)  then 
 PQ.enqueue(right child)  
return the best solution and it’s maximum value  
 

In the worst case, the branch and bound 
algorithm will generate all intermediate stages 
and all leaves. Therefore, the tree will be 
complete and will have 2n-1 – 1 nodes, i.e. will 
have an exponential complexity. However, it is 
still better than the brute force algorithm because 
on average it will not generate all possible nodes 
(solutions). The required memory depends on 
the length of the priority queue. 

 
2.5 GENETIC ALGORITHM 

 
A genetic algorithm is a computer algorithm 

that searches for best solutions to a problem from 
among a large number of possible solutions. GAs 
begin with a set of solutions called population 
and each solution is called chromosome. From 
solutions of current population, a new 
population is generated in hope of getting a 
better solution.The new population is generated 
by applying the GA operations- Mutation, Cross-
Over and Selection [16]. This process is repeated 
until some condition is satisfied [17]. From the 
population, find the best chromosome with high 
optimality as the result in that generation. 
Results of the generations are compared and if 
the difference in the results of any two 
consecutive generations is lesser than a pre 
specified threshold, then stop the procedure of 
generating new populations and can declare the 
chromosome with high optimality as result.  
Outline of basic Genetic Algorithms are given 
here.  

1. Start: Randomly generate a population 
of N chromosomes.   

2. Fitness: Calculate the fitness of all 
chromosomes.  

3. Create a new population:  
a. Selection: Randomly 2 

chromosomes are selected from 
the population.   

b. Crossover: Perform crossover 
on the 2 chromosomes which 
are selected.   

c. Mutation: Perform mutation on 
the chromosomes which are 
obtained after performing 
crossover.  

4. Replace: Replace the current population 
with the new population.   

5. Test: Test whether the end condition is 
satisfied. If so, stop. If not, return the 
best solution in current population and 
go to step 2. 

Each iteration of this process is called 
generation. The entire set of generations is called 
a run [3].  
Complexity .The complexity of the genetic 
algorithm depends on the number of items (N) 
and the number of chromosomes in each 
generation (Size). It is O(Size*N).   
 
3. DISCUSSION 

Implementation of Greedy algorithm is 
simple, will get only feasible solution and no 
guarantee that will get optimal solution its time 
complexity is linear with best sorting algorithm 
i.e. O(n) where n is the number of objects.  

Implementation of Dynamic Programming, 
Backtracking, Branch and Bound and Genetic 
algorithms is little bit difficult but will get the 
optimal solution. Dynamic Programming results 
only one solution whereas the other methods 
result all possible optimal solutions.  The time 
complexity of Dynamic Programming algorithm 
is polynomial i.e. O(n*W) where n is the number 
of objects and the W is the capacity of the bag. 
The time complexity of the other methods is 
exponential i.e. O (2n) where n is the number of 
objects. Dynamic Programming, Branch and 
Bound and Genetic algorithm can be 
implemented as a parallel algorithm with linear 
complexity. 

4. CONCLUSION 
The comparison of the greedy, dynamic 

programming, backtracking, branch and bound 
and genetic algorithms shows that the 
complexities of some these algorithms are 
exponential, but may be applied to more suitable 
problems than others. The best approximation 
approaches for the 0/1 Knapsack Problem are 
dynamic programming and genetic algorithm. 
As,  the choice between the two depends on the 
capacity of the knapsack and the size of the 
population. The dynamic programming yields 
only one optimal solution and GA results all the 
possible optimal solutions. The dynamic 
programming is easy and straight forward to 
code than genetic algorithm but the genetic 
algorithm can be programmed in linear time in 
parallel environment. 
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